
Miloš Savić and Mirjana Ivanović

Department of Mathematics and Informatics

Faculty of Sciences

University of Novi Sad

Densification of cyclic

dependencies among classes in

OO software systems

Outline

 Introduction

Related work and motivation

Methodology

Experiments and results

Conclusions and future work

2 / 22

Outline

 Introduction

Related work and motivation

Methodology

Experiments and results

Conclusions and future work

3 / 22

Introduction
 A and B are cyclic (mutually) dependent iff A directly or indirectly

depends on B, and B directly or indirectly depends on A

 Parnas, 1978: two mutually dependent modules cannot be tested

until both modules are finished and working

 Long cycles: nothing works until everything works

 Booch, 1995: well structured OO systems have clearly defined,

hierarchical layers

 Long cycles can cause mutually dependend (non-hierarchical) layers

 Fowler, 2001: structural cycles can cause endless cycles of

change propagation

 Cyclic dependencies are caused by internal reuse, but prevent

efficient external reuse and program comprehension
4 / 22

Cyclic dependencies in OO software systems

 Cyclic dependencies among methods

 A calls B and B calls A

 A calls B, B calls C, ..., Y calls Z, Z calls A

 Not bad if the code is generated (e.g. generated parsers)

 Cyclic dependencies among classes

 Caused by cyclic dependencies among methods or mutual internal

class agregation/reuse

 Not bad if they are short (understandable and maintainable) and

natural (e.g. classes representing nodes and links)

 Cyclic dependencies among packages

 Caused by cyclic dependencies among classes

5 / 22

Cyclic dependencies in OO software systems

 Cyclic dependencies are easy to detect, but hard to remove

 Two classes are mutually dependent if they belong to the same strongly

connected component in the class collaboration network

 Computation of minimum edge feedback set is NP-complete

 Intrinsic interdependency between the real world objects the classes

model

6 / 22

Outline

 Introduction

Related work and motivation

Methodology

Experiments and results

Conclusions and future work

7 / 22

Related work
 Research related to cyclic dependencies in software systems is

mostly focused on breaking cycles during integration testing.

 Integration testing order heavily depends on topological sorting of

class collaboration networks

 Just a few empirical studies investigating whether the principle

“avoid cycle dependencies” is being followed and to what extent.

 Melton and Tempero, 2007, An empirical study of cycles among classes in

Java

 Laval et al, 2012, Efficient retrieval and ranking of undesired package cycles

in large software systems

 Oyetoyan et al., 2013, A study of cyclic dependencies on defect profiles of

software components

8 / 22

Related work
 Melton and Tempero, 2007 (78 software systems)

 45% systems have a cycle involving at least 100 classes, 10%

systems have a cycle involving at least 1000 classes

 Laval et al., 2012 (4 software systems)

 Large strongly connected components in package collaboration

networks

 Metrics of cycle desirability

 Oyetoyan et al., 2013 (6 software systems)

 Classes belonging to strongly connected components tend to

be more defective than classes not involved in cyclic

dependencies

9 / 22

Motivation

 Previously mentioned empirical studies are

focused on size of SCCs, not on their structural

characteristics

 Our empirical study is focused on:

I. Complexity of strongly connected components

II. Mining characteristics of classes involved in strongly

connected components

10 / 22

Outline

 Introduction

Related work and motivation

Methodology

Experiments and results

Conclusions and future work

11 / 22

Methodology
 Complexity of strongly connected components

 Two SCCs of the same size can have different complexity

 The less dense (cohesive) one is less complex to understand,

refactor or maintain

 Average intra-SCC degree as a measure of cohesiveness of SCC

 Mining structural characteristics of classes involved in cyclic

dependencies

 Classes are characterized by a rich metric vector

 Metrics of internal complexity (LOC, cyclomatic complexity)

 Metrics of design complexity (coupling and inheritance

metrics), domain-independent metrics of centrality

 Comparison of set of nodes based on the Mann-Whitney U test

and probabilities of superiority
12 / 22

Outline

 Introduction

Related work and motivation

Methodology

Experiments and results

Conclusions

13 / 22

Experimental dataset

 5 open-source widely used Java software systems

 Class collaboration networks extracted using

SNEIPL (SSQSA back-end)

14 / 22

Basic characteristics of SCCs

 We used Tarjan’s algorithm to identify SCCs

 Existence of large SCCs

 Link reciprocity is small, but higher than expected by

random chance

 The Erdos-Renyi model of random graphs as the null model

 Path reciprocity is significantly higher than link reciprocity for

each examined system  cyclic dependencies are mostly

indirect

Densification of SCCs (I)
 Average intra-SCC degree, A(S) = L(S) / N(S)

 1 ≤ A(S) ≤ N(S) - 1

 A(S) = 1  S is a pure circle

 A(S) = N(S) – 1  S is a clique

 SCCs densify with size

 Densification of SCCs indicates that the number of links in a

SCC grows super-linearly with the number of nodes. 16 / 22

Densification of SCCs (II)
 Power law is a simple model of super- or sub-linear growth

frequently observed in nature, society and engineered systems.

 Y ~ Xα (straight lines on log-log plots)

 In our case smaller α implies smaller growth rate

α can be used as an indicator of software quality
Ideal α = 1  all SCCs are (nearly) pure circles

Worst α = 2  all SCCs are (nearly) cliques

Smaller α means better quality 17 / 22

Characteristics of nodes involved in cyclic

dependencies

 For a system, we divide classes into two categories

 C – classes involved in cyclic dependencies (belong to SCCs)

 N – classes not involved in cyclic dependencies

 Does classes in C tend to have higher values of metric M

compared to classes in N?

 Mann-Whitney U test – to test stochastic superiority of C over

N with respect to metric M

 Probability of superiority – probability that randomly selected

metric value from C exceeds randomly selected metric value

from N.

18 / 22

Strongly connected core of classes

 Ant and JFreeChart have strongly connected core: the

most central and important classes tend to be in SCCs.

 Hard refactorings: to remove cyclic dependencies in Ant and

JFreeChart we have to reorganize dependencies between core

classes
19 / 22

Outline

 Introduction

Related work and motivation

Methodology

Experiments and results

Conclusions and future work

20 / 22

Conclusions and future work
 Real-world OO software systems contain large cyclic dependencies

 Cyclic dependencies densify with size

 The densification phenomena can be modeled by a power-law whose

scaling exponent can be used as an indicator of software quality

 Presence of strongly connected cores that negatively impact software

maintainability

 Future work:

 structure of strongly connected components in package and

method collaboration networks

 evolution of strongly connected components in software networks

21 / 22

Miloš Savić and Mirjana Ivanović

Department of Mathematics and Informatics

Faculty of Sciences

University of Novi Sad

Densification of cyclic

dependencies among classes in

OO software systems

