
Miloš Savić and Mirjana Ivanović

Department of Mathematics and Informatics

Faculty of Sciences

University of Novi Sad

Densification of cyclic

dependencies among classes in

OO software systems

Outline

 Introduction

Related work and motivation

Methodology

Experiments and results

Conclusions and future work

2 / 22

Outline

 Introduction

Related work and motivation

Methodology

Experiments and results

Conclusions and future work

3 / 22

Introduction
 A and B are cyclic (mutually) dependent iff A directly or indirectly

depends on B, and B directly or indirectly depends on A

 Parnas, 1978: two mutually dependent modules cannot be tested

until both modules are finished and working

 Long cycles: nothing works until everything works

 Booch, 1995: well structured OO systems have clearly defined,

hierarchical layers

 Long cycles can cause mutually dependend (non-hierarchical) layers

 Fowler, 2001: structural cycles can cause endless cycles of

change propagation

 Cyclic dependencies are caused by internal reuse, but prevent

efficient external reuse and program comprehension
4 / 22

Cyclic dependencies in OO software systems

 Cyclic dependencies among methods

 A calls B and B calls A

 A calls B, B calls C, ..., Y calls Z, Z calls A

 Not bad if the code is generated (e.g. generated parsers)

 Cyclic dependencies among classes

 Caused by cyclic dependencies among methods or mutual internal

class agregation/reuse

 Not bad if they are short (understandable and maintainable) and

natural (e.g. classes representing nodes and links)

 Cyclic dependencies among packages

 Caused by cyclic dependencies among classes

5 / 22

Cyclic dependencies in OO software systems

 Cyclic dependencies are easy to detect, but hard to remove

 Two classes are mutually dependent if they belong to the same strongly

connected component in the class collaboration network

 Computation of minimum edge feedback set is NP-complete

 Intrinsic interdependency between the real world objects the classes

model

6 / 22

Outline

 Introduction

Related work and motivation

Methodology

Experiments and results

Conclusions and future work

7 / 22

Related work
 Research related to cyclic dependencies in software systems is

mostly focused on breaking cycles during integration testing.

 Integration testing order heavily depends on topological sorting of

class collaboration networks

 Just a few empirical studies investigating whether the principle

“avoid cycle dependencies” is being followed and to what extent.

 Melton and Tempero, 2007, An empirical study of cycles among classes in

Java

 Laval et al, 2012, Efficient retrieval and ranking of undesired package cycles

in large software systems

 Oyetoyan et al., 2013, A study of cyclic dependencies on defect profiles of

software components

8 / 22

Related work
 Melton and Tempero, 2007 (78 software systems)

 45% systems have a cycle involving at least 100 classes, 10%

systems have a cycle involving at least 1000 classes

 Laval et al., 2012 (4 software systems)

 Large strongly connected components in package collaboration

networks

 Metrics of cycle desirability

 Oyetoyan et al., 2013 (6 software systems)

 Classes belonging to strongly connected components tend to

be more defective than classes not involved in cyclic

dependencies

9 / 22

Motivation

 Previously mentioned empirical studies are

focused on size of SCCs, not on their structural

characteristics

 Our empirical study is focused on:

I. Complexity of strongly connected components

II. Mining characteristics of classes involved in strongly

connected components

10 / 22

Outline

 Introduction

Related work and motivation

Methodology

Experiments and results

Conclusions and future work

11 / 22

Methodology
 Complexity of strongly connected components

 Two SCCs of the same size can have different complexity

 The less dense (cohesive) one is less complex to understand,

refactor or maintain

 Average intra-SCC degree as a measure of cohesiveness of SCC

 Mining structural characteristics of classes involved in cyclic

dependencies

 Classes are characterized by a rich metric vector

 Metrics of internal complexity (LOC, cyclomatic complexity)

 Metrics of design complexity (coupling and inheritance

metrics), domain-independent metrics of centrality

 Comparison of set of nodes based on the Mann-Whitney U test

and probabilities of superiority
12 / 22

Outline

 Introduction

Related work and motivation

Methodology

Experiments and results

Conclusions

13 / 22

Experimental dataset

 5 open-source widely used Java software systems

 Class collaboration networks extracted using

SNEIPL (SSQSA back-end)

14 / 22

Basic characteristics of SCCs

 We used Tarjan’s algorithm to identify SCCs

 Existence of large SCCs

 Link reciprocity is small, but higher than expected by

random chance

 The Erdos-Renyi model of random graphs as the null model

 Path reciprocity is significantly higher than link reciprocity for

each examined system cyclic dependencies are mostly

indirect

Densification of SCCs (I)
 Average intra-SCC degree, A(S) = L(S) / N(S)

 1 ≤ A(S) ≤ N(S) - 1

 A(S) = 1 S is a pure circle

 A(S) = N(S) – 1 S is a clique

 SCCs densify with size

 Densification of SCCs indicates that the number of links in a

SCC grows super-linearly with the number of nodes. 16 / 22

Densification of SCCs (II)
 Power law is a simple model of super- or sub-linear growth

frequently observed in nature, society and engineered systems.

 Y ~ Xα (straight lines on log-log plots)

 In our case smaller α implies smaller growth rate

α can be used as an indicator of software quality
Ideal α = 1 all SCCs are (nearly) pure circles

Worst α = 2 all SCCs are (nearly) cliques

Smaller α means better quality 17 / 22

Characteristics of nodes involved in cyclic

dependencies

 For a system, we divide classes into two categories

 C – classes involved in cyclic dependencies (belong to SCCs)

 N – classes not involved in cyclic dependencies

 Does classes in C tend to have higher values of metric M

compared to classes in N?

 Mann-Whitney U test – to test stochastic superiority of C over

N with respect to metric M

 Probability of superiority – probability that randomly selected

metric value from C exceeds randomly selected metric value

from N.

18 / 22

Strongly connected core of classes

 Ant and JFreeChart have strongly connected core: the

most central and important classes tend to be in SCCs.

 Hard refactorings: to remove cyclic dependencies in Ant and

JFreeChart we have to reorganize dependencies between core

classes
19 / 22

Outline

 Introduction

Related work and motivation

Methodology

Experiments and results

Conclusions and future work

20 / 22

Conclusions and future work
 Real-world OO software systems contain large cyclic dependencies

 Cyclic dependencies densify with size

 The densification phenomena can be modeled by a power-law whose

scaling exponent can be used as an indicator of software quality

 Presence of strongly connected cores that negatively impact software

maintainability

 Future work:

 structure of strongly connected components in package and

method collaboration networks

 evolution of strongly connected components in software networks

21 / 22

Miloš Savić and Mirjana Ivanović

Department of Mathematics and Informatics

Faculty of Sciences

University of Novi Sad

Densification of cyclic

dependencies among classes in

OO software systems

