(4

Densificatio

dependencies a
OO software

Milos Savi¢ and Mirjana Ivanovic

Department of Mathematics and Informatics
Faculty of Sciences
University of Novi Sad

AS STy,
& 9
Ko *)
_ St
> =0 =2
. j\’:_, ,j"c .
SN
(4 -13')nr\<\.;.
C i
PP ANTE

(&
N

Outline

® |ntroduction

® Related work and motivation
® Methodology

® Experiments and results

® Conclusions and future work

222

AS STy,
& 9
g 2
_ St
> =0 =2
. j‘n’:_, O"”C N
(75) .
(4 -13')nr\q;.
O‘(‘Iﬂ_ '\‘&.“‘1'

(&
N

Outline

® I[ntroduction

® Related work and motivation
® Methodology

® Experiments and results

® Conclusions and future work

3/22

o \:\ Y %
£ o
<% ¢, ,ﬁf :
(4 1. ');5]‘}3\(\;
RN
Introducti h

® A and B are cyclic (mutually) dependent iff A directly or indirectly
depends on B, and B directly or indirectly depends on A

® Parnas, 1978: two mutually dependent modules cannot be tested
until both modules are finished and working

O Long cycles: nothing works until everything works

® Booch, 1995: well structured OO systems have clearly defined,
hierarchical layers

o Long cycles can cause mutually dependend (non-hierarchical) layers

® Fowler, 2001: structural cycles can cause endless cycles of
change propagation

® Cyclic dependencies are caused by internal reuse, but prevent
efficient external reuse and program comprehension
4122

Cyclic dependencies in OO software systems

® Cyclic dependencies among methods
o A calls B and B calls A
o AcallsB,BcallsC, ..., Ycalls Z Zcalls A
o Not bad if the code is generated (e.g. generated parsers)

® Cyclic dependencies among classes

o Caused by cyclic dependencies among methods or mutual internal
class agregation/reuse

o Not bad if they are short (understandable and maintainable) and
natural (e.g. classes representing nodes and links)

® Cyclic dependencies among packages
o Caused by cyclic dependencies among classes

5/22

A0S STy,
@-‘\ W ‘r’()/
& - o,
Z ramim
>0 I 2
T %, 3K
(4 LIS
T INTN o
W %R

A

Cyclic dependencies in OO software systemms\

® Cyclic dependencies are easy to detect, but hard to remove

o Two classes are mutually dependent if they belong to the same strongly
connected component in the class collaboration network

o Computation of minimum edge feedback set is NP-complete

o Intrinsic interdependency between the real world objects the classes
model

6 /22

A0S STy,
@-‘\ W ‘r’()/
& - o,
Z ramim
>0 I 2
T %, 3K
4 q,')/%rz\(‘\'-:
0, D
PLANTE

[
N

Outline

® |ntroduction

® Related work and motivation
® Methodology

® Experiments and results

® Conclusions and future work

[]22

b m— 25
ry j(‘t_,{)ujjc :
4 '13;2"] r\ts

® Research related to cyclic dependencies in software systems is
mostly focused on breaking cycles during integration testing.

O Integration testing order heavily depends on topological sorting of
class collaboration networks

® Just a few empirical studies investigating whether the principle
“avoid cycle dependencies” is being followed and to what extent.

o Melton and Tempero, 2007, An empirical study of cycles among classes in
Java

o Laval et al, 2012, Efficient retrieval and ranking of undesired package cycles
in large software systems

o Oyetoyan et al., 2013, A study of cyclic dependencies on defect profiles of
software components

53'“\\ N H ;{%’o

7% % \;'::C :

’ "fz’)’{‘f })WC..;
| O;,L‘l\‘._':ﬂ'

® Melton and Tempero, 2007 (78 software systems)

0 45% systems have a cycle involving at least 100 classes, 10%
systems have a cycle involving at least 1000 classes

® Laval et al., 2012 (4 software systems)

O Large strongly connected components in package collaboration
networks

O Metrics of cycle desirability

® Oyetoyan et al., 2013 (6 software systems)

o Classes belonging to strongly connected components tend to
be more defective than classes not involved in cyclic
dependencies

9/22

_.S—“\\ :\:‘: T u /"/,
= -
_ S 2
<% N \;'::C :
’ "fz’)’{‘f })1(‘..\\"7
-(J_,u], § \H
L ANT

® Previously mentioned empirical studies are
focused on size of SCCs, not on their structural
characteristics

® Our empirical study is focused on:
. Complexity of strongly connected components

. Mining characteristics of classes involved in strongly
connected components

10/ 22

AS STy,
& 9
g 2
— Somm
> =0 =2
. j‘n’:_, O"”C N
NN
(4 -13')nr\q;.
O‘(‘Iﬂ_ '\‘&.“‘1'

(&
N

Outline

® |ntroduction

® Related work and motivation
® Methodology

® Experiments and results

® Conclusions and future work

11/ 22

S T,
b m— 5
<% %)\;'::C :
v -':é?d}.w(‘;

® Complexity of strongly connected components
o Two SCCs of the same size can have different complexity

O The less dense (cohesive) one is less complex to understand,
refactor or maintain

O Average intra-SCC degree as a measure of cohesiveness of SCC

® Mining structural characteristics of classes involved in cyclic
dependencies

o Classes are characterized by a rich metric vector
Metrics of internal complexity (LOC, cyclomatic complexity)

Metrics of design complexity (coupling and inheritance
metrics), domain-independent metrics of centrality

o Comparison of set of nodes based on the Mann-Whitney U test
and probabilities of superiority
12/ 22

A0S STy,
@-‘\ W ‘r’()/
& - o,
Z ramim
>0 I 2
T %, 3K
4 q,')/%rz\(‘\'-:
0, D
PLANTE

[
N

Outline

® [ntroduction

® Related work and motivation
® Methodology

® Experiments and results

® Conclusions

13/ 22

(5

Experimental dataset

® 5 open-source widely used Java software systems

® Class collaboration networks extracted using
SNEIPL (SSQSA back-end)

Experimental dataset of class collaboration networks. /N 1s the number of nodes,
L 1s the number of links.

Software system Version LOC N L
Tomcat 7.0.29 320924 1494 6841
Lucene 3.6.0 111763 789 3544
Ant 1.9.2 219094 1175 5521
Xerces 2.11.0 216902 876 4775
JFreeChart 1.0.17 226623 624 3218

14 | 22

Basic characteristics of SCCs

® \We used Tarjan’s algorithm to identify SCCs
® Existence of large SCCs

® Link reciprocity is small, but higher than expected by
random chance
o The Erdos-Renyi model of random graphs as the null model

® Path reciprocity is significantly higher than link reciprocity for
each examined system = cyclic dependencies are mostly

Indirect
Software system #SCC LSCC [%] N(SCC) [%] R R, RP
Tomecat 56 12.72 35.74 0.078 0.075 0.179
Lucene 40 17.87 35.23 0.080 0.075 0.162
Ant 27 24.34 35.06 0.046 0.042 0.237
Xerces 32 13.81 32.76 0.078 0.072 0.118

JFreeChart 19 7.05 17.63 0.032 0.024 0.048

Densification of SCCs (1)

® Average intra-SCC degree, A(S) = L(S) / N(S)
01<AS)sN(S)-1

o0A(S)=1 - Sis a pure circle
0 A(S)=N(S)-1 - Sis aclique
® SCCs densify with size \
Software system p(N(S5), %)
Tomcat 0.975
Lucene 0.965
Ant 0.982
Xerces 0.977
JEreeChart 0.825

® Densification of SCCs indicates that the number of links in a
SCC grows super-linearly with the number of nodes. 16/ 22

Densification of SCCs (Il) N

® Power law is a simple model of super- or sub-linear growth
frequently observed in nature, society and engineered systems.

o Y ~ X9 (straight lines on log-log plots)
O In our case smaller a implies smaller growth rate

1000 5 10005

Software system «a ® Tomeat o Xerces
—— Power-law fit Power-law fit
TDm(:'at 1 29 (C(=1.29, R"2 = 0904} {E(=1.33, R = 099)
. 1004 1004
Lucene 1.27 5 -
L8]
O
Ant 127 % o
104 104
Xerces 1.33
JFreeChart 1.32 e s
1 T T T T
10 100 1 10 100
N(SCC) N(SCC)

a can be used as an indicator of software quality
Ideal a =1 - all SCCs are (nearly) pure circles
Worst a = 2 - all SCCs are (nearly) cliques
Smaller a means better quality 17 / 22

Characteristics of nodes involved in cyclic
dependencies

® For a system, we divide classes into two categories
o C — classes involved in cyclic dependencies (belong to SCCs)
O N — classes not involved in cyclic dependencies

® Does classes in C tend to have higher values of metric M
compared to classes in N?

o Mann-Whitney U test — to test stochastic superiority of C over
N with respect to metric M

o Probability of superiority — probability that randomly selected
metric value from C exceeds randomly selected metric value
from N.

18/ 22

t—

Strongly connected core of classes

® Ant and JFreeChart have strongly connected core: the
most central and important classes tend to be in SCCs.

Software system Metric (o) [0 U P NullHyp PS, PS;
Ant LOC 194.4 162.2 176965 0.00036 rejected 0.56 0.43
cC 15.69 14.29 174507 0.0018 rejected 0.51 0.39
NUMA 4.36 5.01 160886 0.504 accepted 0.42 0.44
NUMM 9.86 8.23 172325 0.006 rejected 0.51 0.42
IN 9.78 1.95 228723 < 107* rejected 0.64 0.19
ouT 5.93 4.02 200409 < 107* rejected 0.59 0.31
CBO 15.11 5.98 215327 < 1074 rejected 0.65 0.28
NOC 1.17 0.21 168921 0.0343 rejected 0.16 0.08
DIT 1.11 1.14 157439 0.9624 accepted 0.35 0.35
BET 3255.16 103.95 253004 < 1074 rejected 0.76 0.14
PR 0.001744 0.000369 242063 < 10~ rejected 0.77 0.22

® Hard refactorings: to remove cyclic dependencies in Ant and
JFreeChart we have to reorganize dependencies between core

classes

19/ 22

A0S STy,
\}'-‘\ W ‘r’()/
& - o,
Z ramim
> 3 =
T %, 3K
4 q,')/%rz\(‘\'-:
0, D
PLANTE

[
N

Outline

® |ntroduction

® Related work and motivation
® Methodology

® Experiments and results

® Conclusions and future work

20/ 22

Conclusions and future work
® Real-world OO software systems contain large cyclic dependencies

® Cyclic dependencies densify with size

® The densification phenomena can be modeled by a power-law whose
scaling exponent can be used as an indicator of software quality

® Presence of strongly connected cores that negatively impact software
maintainability

® Future work:

O structure of strongly connected components in package and
method collaboration networks

O evolution of strongly connected components in software networks

21/ 22

(4

Densificatio

dependencies a
OO software

Milos Savi¢ and Mirjana Ivanovic

Department of Mathematics and Informatics
Faculty of Sciences
University of Novi Sad

